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Abstract 

We used machine learning models to produce remotely sensed maps of aspen (Populus 

tremuloides) percent cover in the broader Lake Tahoe area (BLTA). Aspen is an important 

ecological and cultural resource both sensitive to and dependent on wildfire, and also vulnerable 

to climate change. Elsewhere in its range aspen declines have been well documented. More 

information on where aspen are and how aspen cover has changed over time is needed to 

inform management. Our ensemble model of aspen cover over the past decade (2014–2023) 

performed well in cross-validated metrics of predictive performance (e.g., R2 = 0.81). The maps 

provide a more accurate and detailed view of the distribution of aspen in our area compared 

with previous maps that delineated aspen presence but did not assess levels of cover. Model 

outputs indicate that aspen cover has declined in our study area over the past 40 years. This 

result is consistent across several distinct versions of our models, appears to be robust to 

potential sources of statistical bias, and is supported by multiple lines of outside evidence. 

Across the BLTA we provide an initial estimate that aspen cover has declined by about 26% 

(95% CI: 9–39%) over the 1984–2023 period. A greater focus on restoration treatments, such 

as prescribed fire, strategic management of naturally ignited fires, and targeted thinning of 

conifers overtopping aspen, could slow or reverse apparent aspen declines in our region. 

Detailed maps, such as our product, can serve to inform strategic and adaptive management. 

 

Introduction 

Hardwood communities are an important ecological and cultural resource both sensitive 

to and dependent on wildfire, and also vulnerable to climate change. The Tahoe Regional 

Planning Agency has adopted an “environmental threshold” for riparian hardwoods in the basin 

through various policies and restoration projects, and it has sought to map trends over time and 

in response to restoration treatments targeting aspen (Populus tremuloides) communities. 

Similarly, the Land and Resource Management Plan for the Lake Tahoe Basin Management 

Unit prioritized a monitoring question, “What is our progress towards maintaining and improving 

willow and aspen habitats within the Basin?” Existing vegetation maps for the Tahoe Basin have 

deficiencies in their resolution, accuracy, and/or temporal update cycle that limit their utility in 

tracking the condition of existing hardwood stands. Updating these maps and providing accurate 

quantification of hardwoods has been identified as a management need. This project builds on 

recent regional work to build high-resolution maps of aspen stands in the Tahoe Basin.  
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Results  
Spatial Models  

Our remotely sensed estimate of the area of the Lake Tahoe Basin Management Unit 

(hereafter referred to simply as “the basin” or LTBMU) with at least 10% aspen cover over the 

period 2014–2023 was 886 ha (0.34% of terrestrial area). We estimate that 166 ha had at least 

50% aspen cover during this period (0.06% of the terrestrial area in the basin). Aspen cover was 

higher over our entire study area, the Broader Lake Tahoe Area (BLTA), defined as the basin 

buffered by 20-km (Fig 1). We estimate the area of the BLTA with at least 10% and 50% aspen 

cover are 3,658 ha and 872 ha, respectively (0.43% and 0.10% of terrestrial area, Fig 2). These 

estimates are derived from our ensemble machine learning model version 

4.6.LS4to9.Ensemble.T02, also referred to simply as “ensemble model” elsewhere in this report. 

They reflect estimated aspen cover within 900-m2 Landsat-aligned grid cells. Estimates of 

“cover” refer to percent cover from above (PCFA), the percent cover visible from directly 

overhead, visible to satellites in low earth orbit. The term “cover” is used interchangeably with 

PCFA elsewhere in this report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Map of aspen 

cover for the period 

2014–2023 as 

estimated by our 

ensemble model. The 

external boundary is the 

broader Lake Tahoe 

area. The internal 

boundary is the Lake 

Tahoe Basin 

Management Unit. 

Lakes are shown in light 

blue.  
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Fig 2. Area of the broader Lake Tahoe area with aspen cover above threshold levels, as estimated by our 

ensemble model for the period 2014–2023. Areas with sparse scattered aspen trees (e.g.,10–20% aspen 

cover) appear to be more extensive than areas with high aspen cover (e.g., > 80% aspen cover). The 

area with greater than 10% and 50% aspen cover are shown with small dots. Estimates of the area with 

less than about 10% aspen cover may be less reliable, as the frequency of commission and omission 

errors appears to be more prevalent below this threshold. 

 

Our models of aspen cover over the 10-year period 2014–2023 performed well in cross-

validated metrics of predictive performance (Table 1). Ensemble and extreme gradient boosting 

(XGB) models were trained and evaluated on 82,967 900-m2 Landsat-aligned plots, including 

1,108 surveyed plots, 41,874 background plots, and 39,985 NPP plots (see methods). Survey 

plots with disturbance events between the survey date and model period (2014–2023) were 

excluded. Maxent (ME) models were trained and evaluated on a smaller dataset, consisting of 

plots where each seasonal period had at least one unobstructed satellite observation of spectral 

reflectance over the full model period. 

The coefficient of determination for our ensemble model was 0.81 (Table 1). The 

ensemble model had the best performance in terms of coefficient of determination, root mean 

square error, and Brier Score, while the XGB model had the highest performance in terms of 

mean absolute error and log loss. Plots of observed vs predicted performance indicate the XGB 

and ME models each had their own strengths and weaknesses. XGB had better performance 

distinguishing areas with aspen from areas without aspen. ME had better accuracy and less 

bias distinguishing the level of aspen cover. Missing (i.e., obstructed) spectral data resulted in 

the ME model being unable to estimate cover in about 1.4% of the terrestrial area within our 

study region. To capture the best aspects of both models we composed an ensemble model 

with aspen cover calculated as mean(PXBG, PME) ⋅ (PXBG ≥ 2), where PXBG and PME are percent 

aspen cover, as estimated by the two component models. The 2% threshold applied to the XGB 

model was set by examining aerial imagery, reliability diagrams, and performance metrics, and 

driving around the BLTA with binoculars, attempting to balance the resulting levels of 
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commission and omission errors. The resulting ensemble model has strong overall 

performance, with a notable bias toward underpredicting aspen cover in plots with > 80% aspen 

cover (Fig 3).  

 

Table 1. Cross-validated predictive performance of top performing models of aspen cover for the period 

2014-2023. Ensemble and XGB models were trained and evaluated on 82,967 900-m2 Landsat-aligned 

plots, including 1,108 surveyed plots, 41,874 background plots, and 39,985 NPP plots. Survey plots with 

disturbance events between the survey date and model period (2014–2023) were excluded. ME models 

were trained and evaluated on a smaller dataset, consisting of plots where no seasonal periods were 

completely obstructed over the full model period. Ensemble models use the simple mean of XBG and ME 

predictions. 

Model R2 MAE RMSE 

Log 

Loss 

Brier 

Score 

4.6.LS4to9.Ensemble.T02 0.8120 0.0051 0.0255 0.0097 0.0006 

4.6.LS4to9.XGB 0.7813 0.0037 0.0275 0.0087 0.0008 

4.6.LS4to9.ME 0.7989 0.0230 0.0517 0.0408 0.0027 

 

Informal field surveys (driving, walking, bicycling, binoculars) conducted from June–

October 2024 by JAES and JWL, also suggest our ensemble model has strong overall 

performance. The boundaries of large aspen stands are depicted with remarkable detail. The 

model successfully detects the presence of aspen that are intermixed with a multitude of other 

plant species and understory conditions. Notably, the model often fails to detect low levels of 

aspen cover in more urban or suburban environments (e.g., parking lots, irrigated lawns, denser 

buildings); this is unsurprising given the data used to train the model came mostly from less 

disturbed native ecosystems. Omission errors in 900-m2 pixels with greater than about 10% 

aspen cover from above appear to be relatively uncommon. Below this level omission errors 

become more common. We observed many instances where the model failed to detect low 

levels of aspen cover (e.g., a single large aspen tree within a pixel, sparse saplings typically 

totaling less than about 10% cover within a pixel). As expected, when satellite views of aspen 

are largely obstructed by taller trees (i.e., high understory cover but low cover from above) the 

model’s ability to detect aspen is hampered. Commission errors typically consist of the model 

estimating low levels of aspen cover in areas dominated by allied species and vegetation types 

(e.g., montane riparian, alder, cottonwood, willows). Commission errors appear to be relatively 

uncommon in areas the model estimated have greater than about 10% aspen cover. Providing 

our model with additional training data—spanning a wider range of adjacent vegetation 

compositions—would improve its overall performance. In particular, the model would benefit 

from additional survey data from areas dominated by other montane riparian species. 
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Fig 3. Reliability diagram depicting out-of-sample predictive performance of our ensemble model. The 

model appears to perform remarkably well distinguishing areas with aspen stands from areas without 

aspen stands and moderately well predicting aspen cover within individual 30-m x 30-m grid cells. 

 

Compared with previous maps our ensemble model provides a more information rich 

picture of aspen cover. While our product provides quantitative estimates of aspen cover within 

900-m2 pixels, the previous maps classify polygons by vegetation type or taxa and do not 

estimate aspen cover with polygons. To the extent that these disparate data types can be 

compared, our product appeared to outperform the previous products. Still, there are locations 

that our product missed, and a previous product hit its target.  

We compared our map with previous products by reviewing areas of disagreement 

between the products. We examined sequences of Google Earth imagery and conducted 

informal field surveys in these areas. Compared to previous maps, our map appeared to have 

higher overall levels of accuracy and detail. Our product appeared to be much more accurate 

than FVEG WHR (FRAP 2015). The two WHR types that explicitly include aspen are called 

“aspen” and “montane riparian”. FVEG had high rates of omission errors and moderate rates of 

apparent commission errors for identifying aspen stands. The FVEG map appears to omit a high 

proportion of aspen stands in our study area. We identified 925 ha where our ensemble model 

estimated aspen cover was > 25% but were not mapped as aspen or montane riparian types by 

FVEG, and 2,200 ha where our model estimated aspen cover was > 10% but were mapped as 

non-aspen types by FVEG. The WHR types that were most often misclassified as non-aspen 

types include juniper, montane hardwood-conifer, fresh emergent wetland, and lodgepole pine 

(Fig 4).  
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Fig 4. Discrepancies between our product and WHR vegetation type as mapped by FVEG. Left panel: 

Mean aspen cover, as estimated by our ensemble model, within areas mapped as WHR types by FVEG. 

Only the aspen and montane riparian WHR types explicitly include aspen in their type descriptions. 

Review of aerial imagery in areas of disagreement between the two products suggests that our product is 

much more accurate. In the FVEG map, WHR types that had a high proportion of aspen omission errors 

included juniper and montane hardwood-conifer types. Right panel: Locations predicted to have > 25% 

aspen cover by our model that are classified by FVEG as WHR types that do not explicitly include aspen. 

Location boundaries are outlined in blue to enhance their visibility. 

 

Compared with FVEG WHR, the Dilts et al. (2020) map had far lower levels of both 

omission and commission errors. However, the Dilts et al. (2020) map appeared to be 

sometimes inconsistent in its level of spatial detail; some polygons have detailed boundaries 

that mostly exclude non-aspen areas, while some polygons include large areas (e.g., > 1 ha) 

where aspen are not apparent (i.e., apparent commission errors). Our ensemble model appears 

to perform better at correctly identifying the presence of aspen than the Dilts et al. (2020) map, 

but both products are useful for finding errors made by the other product. Our product identifies 

many small aspen stands that were omitted by the Dilts et al. (2020) map. The Dilts et al. (2020) 

map includes many areas of sparse (e.g., 5%) aspen cover that were omitted by our product. 

 

Spatiotemporal Models  
 Annual to decadal temporal resolution models were fit for periods from 1984–2023. We 

evaluated modeling approaches that either pooled data over multiple year–year periods or fit 

models separately for each period. Of these two categories, models fit separately to each period 

performed better. Interannual differences in weather and phenology appear to result in distinct 

vegetation signals for each year–year period. Within the limited number of models we tested, 

models fit to one year–year period did not tend to generalize well to other periods. However, we 

anticipate that the predictive performance of pooled-period approaches can be improved with 
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further model tuning and data collection. Hybrid and/or hierarchical modeling approaches 

appear poised to result in improved performance for estimates of vegetation cover over time.  

 

 
Fig 5. Model estimates of aspen decline and recovery around Marlette Lake during a mass summertime 

defoliation event caused by an outbreak of white satin moths. Model estimates of aspen cover over time 

broadly align with both written accounts and observations from NAIP and Google Earth imagery. Less 

clear is the degree to which year-to-year fluctuations before the mass defoliation event and after recovery 

reflect real ecological changes or statistical artifacts. 

 

Machine learning models fit separately to each period demonstrated skill tracking clear 

cases of large-scale changes in aspen cover over time. For instance, model predictions 

generally tracked the mass defoliation and recover event surrounding the circa 2017 white satin 

moth outbreak at Marlette Lake (Fig 5), in which a large proportion of aspen trees lacked leaves 

during the summer growing season. At Marlette Lake, model estimates generally align with both 

written accounts and with clearly observable patterns in the sequence of Google Earth imagery. 

Similarly, model predictions for an area of the 2021 Tamarack Fire that burned at high severity 

align with a die-off event that is clearly observable from Google Earth imagery (Fig 6). 

To assess the ability of our model to accurately track changes over time at local spatial 

scales more broadly we used linear regression on annual predicted aspen cover over time for 

each 900-m2 pixel (i.e., aspen_cover ~ intercept + slope * year). We examined trends over 

various time periods (e.g., 2004–2023, etc.) and identified clusters of pixels with higher 

coefficients of determination (e.g., R2 > 0.5). We then examined Google Earth imagery in a few 

dozen of these areas predicted to have substantial change in aspen cover over time. This 

evaluation had mixed results. In most areas Google Earth Imagery was not of sufficient quality 

to determine if the model was correctly identifying trends. When Google Earth imagery allowed 

for trend identification, our model appeared to outperform random chance in predicting the 

direction of aspen cover change. However, this exercise left us with the sense that model 

estimates of change in cover over time may be noisier than estimates of cover across space, 

and that further model improvements would be prudent to improve its capability to inform local-

scale management. 



 9 

Several areas, where the model identified potential changes in aspen cover, appear to 

have experienced mass defoliation events, where a large proportion of the mature aspen trees 

within a stand were clearly missing their leaves in the middle of summer for one or more years. 

We suspect that defoliation events in our training data may be causing the model to 

overestimate aspen cover for defoliated aspen. Refining our training data with further surveys, 

focused on tracking change over time in individual pixels, and well stratified across both space 

and time, would improve the model’s ability to track changes in cover over time. Further, we 

suspect that building a remote sensing algorithm specifically focused on identifying summertime 

mass aspen defoliation events would be fruitful. There appears to be an abundance of mid-

summer images of aspen defoliation events on Google Earth that could be used to develop data 

to train this model. Using this complementary method to identify mass defoliation events (e.g., 

white satin moth, fire) and the extent to which stands subsequentially recovered, could 

substantially improve our ability to track change in aspen cover over time. 

 

 
Fig 6. Aspen decline in an area of the 2021 Tamarack Fire that burned at high severity, followed by initial 

apparent recovery. Model estimates of aspen cover broadly align with observations from NAIP and 

Google Earth. The postfire recovery estimated by the model aligns with observations that aspen typically 

resprouts following high severity fire. However, because low-growing aspen saplings are more difficult to 

survey via aerial imagery than taller trees, on-the-ground surveys may be necessary to accurately train 

and validate model estimates of remotely sensed aspen recovery following high severity fire. 

 

Our models appeared to have skill tracking aspen cover over time. However, we do not 

yet have sufficient repeated-measure survey data to quantify their accuracy in this task. Local 

estimates of change in cover over time may be noisier than estimates of cover across space, 

particularly where training data were sparser. We surmise that an expanded training dataset, 

focused on changes over time within individual plots, would improve and better quantify the 

model’s ability to accurately track vegetation cover over time. Further model refinements are 

needed to more precisely and reliably track changes, particularly at finer spatiotemporal 
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resolutions. Users seeking to track change over time at local spatial scales should exercise 

caution interpreting the current version of our model estimates. 

 

 
Fig 7. Estimated area by percent aspen cover within the broader Lake Tahoe area over time. The general 

trend of declining aspen cover over time is consistent across distinct versions of the model (e.g., distinct 

parameterizations for each period vs. pooled data over all periods; 1-, 2-, 5-, and 10-year periods, etc.). 

This figure depicts estimates from version 4.6.LS4to7.XGB of the model. We used only data from Landsat 

4–7 here to avoid potential for shifting biases over time caused by inclusion of data for Landsat 8–9, 

which has slightly different spectral bands and begins in 2013.  

 

Model outputs consistently indicated a decrease in aspen cover over time (1984–2023) 

in our study area (Fig 7). We used two methods to obtain estimates of percent change in aspen 

cover over time. For both methods we estimated the total area of aspen cover in our study 

region for each period, which we calculated as Σ(aspen_PCFA/100 * grid_cell_area * 

(aspen_PCFA > 10)), excluding grid cells where estimated aspen cover was ≤ 10% (i.e., were 

commission errors become more prevalent). Both methods used only spectral data from 

Landsat 4–7 to avoid potential biases from including Landsat 8–9 (i.e., we used model version 

4.6.LS4to7.XGB). In the first method we simply calculated the ratio of the total area of aspen 

cover between the first (1984–1993) and last (2014–2023) 10-yr periods. This method yielded 

an estimated decline in aspen cover of 16%. In the second method we used log-linear 

regression on 5-yr resolution estimates of the total area of aspen cover. This method yielded an 

estimated decline of 26% (95% CI: 9–39%) over the 1984–2023 period. 

One potentially confounding factor that could bias model estimates is the quantity or 

quality of Landsat spectral data. More limited availability of spectral data can cause the model to 

make more commission errors, resulting in higher estimates of aspen cover. If the quantity of 

spectral data increased over time, this could bias the model toward estimating a decline in 



 11 

aspen cover. To mitigate this issue, we examined predicted aspen cover over time using only 

data from Landsat 4–7, thereby reducing the quantity of spectral data after the 2013 launch of 

Landsat 8. Landsat 8 and 9 use slightly different spectral bands, introducing another potential 

source of bias. The quantity of unobstructed Landsat 4–7 data over time exhibits a hump-

shaped relationship; the 1999–2011 period has about twice as many unobstructed observations 

per pixel per year compared to the preceding, 1984–1998, and subsequent, 2012–2023, 

periods, which have about the same number of unobstructed observations per pixel per year. 

Estimates of change over time from models that used only Landsat 4–7 data show somewhat 

attenuated decline over time compared to models that that used Landsat 4–9, but still estimate 

that substantial decline has occurred (Fig 7). Thus, while trends over time in the quantity of 

spectral data may bias our estimates of change in aspen cover over time, the qualitative trend of 

declining aspen cover over time was robust to this potentially confounding factor. 

Another potentially confounding factor that could bias model estimates is change in 

aspen cover over time within our training data. For most of the plots in our dataset we assumed 

that aspen cover did not change over time. Exceptions included the area near the Marlette 

Lake, where a well-documented mass summertime defoliation event occurred circa 2017, and a 

small number of areas that experienced > 10% loss of basal area due to fire. If aspen cover 

tended to increase over time within our training data, this could bias the model to overestimate 

aspen cover during earlier periods. To mitigate this issue, we also examined trends in aspen 

cover using an earlier, pooled-period version of our model (version 4.1), where data from all 

periods was fed into a single machine-learning model parameterization and the single model 

was used for estimating aspen cover across all periods. Compared with later versions that 

parameterize the model separately for each period, this version of the model was less accurate. 

However, because the model parameterization does not change over time, the model has less 

potential to be biased by gradual changes in aspen cover within plots in our training data. 

Outputs from this pooled-period version of the model also indicated that aspen cover has 

decreased over time within our study area. Similarly, outputs from versions of our model that 

used 1-, 2-, 5-, and 10-year temporal resolution all indicated that aspen cover has declined. 

Notably, observations from field surveys and aerial imagery suggest that the opposite bias may 

be present; our training data appears to include plots where aspen cover decreased over time. 

For this reason, our current methods may underestimate the true rate of decline in aspen cover 

over time. 

 

Discussion and Management Implications 
Our study provides an assessment of aspen (Populus tremuloides) distribution, cover, 

and change over time in the broader Lake Tahoe area over the past four decades. The high-

resolution maps produced by our ensemble machine learning model offer a detailed picture of 

aspen cover, significantly improving upon previous vegetation mapping efforts in the region, 

which estimated aspen distribution but not the level of aspen cover. Our findings suggest a 

concerning trend of aspen decline, estimated at approximately 26% decline (95% CI: 9–39%) 

over the period from 1984 to 2023. This decline aligns with broader patterns observed across 

the western United States and highlights opportunities for targeted management interventions. 
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The ensemble model developed in this study demonstrated strong predictive 

performance (R² = 0.81) in estimating aspen cover across the study area. The model's ability to 

detect aspen intermixed with various vegetation types and understory conditions is particularly 

noteworthy, given the limited training data (approximately 1,000 aerial surveys of 900-m² plots 

with non-zero aspen cover). This performance underscores the potential of machine learning 

approaches in vegetation mapping, especially when combined with strategic sampling and 

diverse data. Additional data and model refinements would increase the accuracy of model 

estimates across both space and time. 

The model also demonstrates capacity to track changes in aspen cover over time. Its 

performance tracking known disturbance events, such as the white satin moth outbreak at 

Marlette Lake and high-severity wildfire impacts, provides evidence of the model's ability to 

quantify cover changes. Nevertheless, users should exercise caution when interpreting fine-

scale estimates of change over time from our current models. Local-scale estimates of change 

in cover over time appear to be noisy; and we do not yet have sufficient repeated-measure 

survey data to more broadly quantify the accuracy of model estimates of change over time. 

Though local-scale estimates of change over time appear to be noisy we have greater 

confidence in region-wide estimates of change over time. 

The estimated 26% decline in aspen cover over the past four decades is consistent with 

observations from other parts of the western United States (Pierce and Taylor 2010, Estes 

2016, Refsland and Cushman 2021).This trend is particularly concerning given the ecological 

importance of aspen in the Lake Tahoe Basin, where it has been identified as one of nine 

Ecologically Significant Areas that disproportionately support biodiversity relative to their area 

(Murphy et al. 2000). Several interacting factors may be contributing to this decline. Fire 

suppression hinders aspen regeneration and facilitates conifer encroachment (Krasnow and 

Stephens 2015). This mechanism was apparent during our informal field surveys; we found 

areas where mature aspen stands appeared to have been recently replaced by dense conifers 

overtopping aspen understories (i.e., fallen trunks of large aspen trees were prevalent on the 

ground). The recent invasion of white satin moths (Leucoma salicis), first detected in the Tahoe 

region in 2011, caused large-scale defoliation events in 2017 and 2018 (Tahoe Environmenta 

Research Center 2019). Aspen declines have also been attributed to climate change, with 

further declines projected, unless there is a substantial increase in fire frequency (Rehfeldt et al. 

2009, Yang et al. 2015, White et al. 2022). 

Recent conifer thinning treatments in the basin alone appear unlikely to stem aspen 

declines because of their limited extent and limits on the size and amount of conifer trees that 

have been removed (Berrill et al. 2016, Berrill et al. 2017). Prospects for slowing or reversing 

aspen decline appear to hinge primarily on fire, specifically management of naturally ignited 

fires or higher-severity prescribed fires. Removal of conifers can boost regeneration but is less 

effective than fire. Aspen regeneration is more vigorous following high-severity wildfires than 

after low-severity burns or prescribed fires. Fire also creates conditions conducive to dispersal 

via seedling establishment. For this reason, fire may be crucial for aspen resilience to climate 

change because it creates opportunities for aspen to shift their distribution toward more 

favorable climate conditions. Strategic management of fire appears to be critical to maintaining 

and restoring aspen populations (Krasnow and Stephens 2015, White et al. 2022). Detailed 

maps of aspen cover—such as our product—can aid strategic and adaptive management, 
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allowing managers to steer fire for beneficial effects and target treatment to where they may be 

most effective. Our product may also be useful for identifying areas where conifers are 

suppressing aspen understories (e.g., where aspen cover has declined), though further model 

development would be prudent to improve this capacity. 

 

Methods 
Sample Design & Data Collection 
 We used human interpretation of vegetation cover from remote imagery to develop a 

dataset to train machine-learning models. Remote imagery consisted of aerial photographs (i.e., 

Google Earth, drone flights, NAIP), and publicly available ground-based photographs (e.g., 

Google Street View). Drone flights, focused on collecting high resolution images during the fall 

leaf-senescence period were conducted by Derek Young in October of 2023. Surveyors used 

these images to estimate vegetation cover within 900-m2 square plots, aligned to USGS 

Landsat pixels. Our study area consisted of the broader Lake Tahoe Area (BLTA), defined by 

the Lake Tahoe Basin Management Unit (LTBMU or “the basin”) buffered by 20 km. USGS 

Landsat imagery in our study area spans raster grids in two projections: UTM zones 10N and 

11N, with resolutions of 30-m and origins of (15,15). We processed these raster grids into two 

vector-based sampling grids, spanning our study region, for surveyors to overlay on top of aerial 

imagery.  

 

 
Fig 8. A screenshot of our initial vegetation survey database and data entry form. A subsequent version 

of this form includes a range of dates, instead of a single date, for which surveyors assess vegetation 

cover estimates to be accurate. 

 

 We developed a vegetation survey protocol in collaboration with Laura Young-Hart 

(LYH), of the Mapping and Remote Sensing Program at the US Forest Service. LYH is a 

botanist with strong expertise and experience surveying vegetation via aerial imagery for 

mapping and assessment. LYH helped us identify which tree and shrub taxa can be reliably 

identified by human observers using aerial imagery. We identified five physiognomic groups and 

ten native hardwood taxonomic groups that are common in our study region and can be readily 

identified by skilled observers. Physiognomic categories included conifer tree, hardwood tree, 

shrub, herbaceous, and non-vegetation. The most readably identifiably taxonomic groups in our 

study area include: Populus tremuloides (quaking aspen), Populus trichocarpa/fremontii (black 

and Fremont cottonwoods, which are difficult to distinguish in part because they commonly 

hybridize in the region forming Populus × parryi), Cercocarpus ledifolius (mountain mahogany), 
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Quercus kellogii (California black oak), Quercus wislizenii/chrysolepis (interior and canyon live 

oak),  Salix spp. (tree willows), Salix spp. (shrub willows), Alnus rhombifolia (white alder), Alnus 

incana spp. tenuifolia (shrubby mountain alder), and Acer glabrum (Rocky Mountain maple).  

The survey protocol consists of first visually scanning aerial and ground-based imagery 

to find plots where vegetation cover can be identified with high confidence. Typically, this 

involves finding regions where vegetation is clearly visible and can be viewed in multiple 

seasonal conditions (e.g., spanning the range from winter leaf-off conditions to autumn leaf 

senescence). Once clearly identifiable plots were selected, surveyors estimated percent cover 

from above (PCFA) for each physiognomic and taxonomic group (Fig 8). Each survey includes a 

date, or range of dates, for which the surveyor believes their PCFA estimates are accurate. We 

added date ranges to the survey protocol late in our data collection effort, to better support 

parameterization of models with higher temporal predictive accuracy. These included repeated 

surveys of 63 plots where changes in vegetation cover over time were evident. We recommend 

that any similar future efforts begin with date ranges and repeat measures instead of a single 

survey date for each plot. 

 

 
Fig 9. Three Google Earth images of the same Landsat-aligned plot (red boundaries) containing mature 

aspen trees and a large conifer. Leaf-off images can be particularly diagnostic for identifying mature 

aspen, revealing their light-colored stems. Distinctive branching patterns are especially apparent from 

oblique views (right) and from shadows on the ground (left). Images of spring green-up and autumn leaf-

senesce (not shown) can also be diagnostic but are less abundant in our study region. 

 

LYH spearheaded data collection efforts by collecting vegetation cover data for about 80 

plots. A primary objective here was to provide characteristic examples of a range of hardwood 

species, identified by an expert, for use in training other vegetation surveyors. We contracted 

with SIG-NAL to conduct the rest of the surveys for this project, to be performed by workers with 

strong experience surveying vegetation via aerial imagery. Despite the examples provided by 

LYH, SIG-NAL surveyors found identifying non-aspen hardwood species challenging and time 

consuming. Aspen is the most abundant hardwood tree species in the basin, one of the most 

important species from a biological conservation perspective (the Lake Tahoe Watershed 

Assessment (Murphy and Knopp 2000) identified aspen groves as one of 9 Ecologically 

Significant Areas that disproportionately support biodiversity relative to their area), and one of 

the easiest to distinguish via aerial imagery (Fig 9). Therefore, to enhance the odds that we 
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could produce maps that address identified management needs, we prioritized collection of 

aspen cover data (Fig 10). We hoped that SIG-NAL surveyors would become more confident 

identifying the other hardwood species over the course of their work and that they would have 

sufficient time to estimate cover for additional hardwood species. To increase our sample size, 

we reallocated some of the UC Davis funding to hire an additional surveyor, which proved to be 

cost-effective, as the UC Davis surveyor completed more than ten times as many surveys per 

dollar spent compared with SIG-NAL (Table 2). While the surveyors employed by SIG-NAL did 

high quality work, they were considerably more expensive. 

 

Fig 10. Number of surveys of 900-m2 Landsat-aligned plots with percent-cover-from-above estimates for 

each physiognomic and taxonomic group. Most surveys where non-zero cover was estimated for non-

aspen hardwood taxonomic groups were conducted by LYH (see text). The dearth of non-zero cover 

estimates for non-aspen hardwood taxa precluded us from developing useful maps for additional taxa. 

 

Table 2. Number of surveys conducted as part of this project by survey team.  

Survey Team 900-m2 Plot Surveys No-Populus Polygon Surveys 

  SIG-NAL 927 3 

  USFS 188 77 

  UC Davis 290 0 

Total 1,405 80 

 

Over the course of data collection, we held weekly coordination meetings with surveyors. 

We attempted to balance survey efficiencies that are gained by surveying several nearby plots 

with spreading out surveys sufficiently to reduce spatial autocorrelation in our sample. We also 

sought to stratify surveys across climatic gradients, to capture variability in phenological spectral 

signals, and gradients in taxon-specific vegetation cover (Fig 11). The following quality control 

measures were taken. Plots with potentially confusing images or from potentially confusing 
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contexts were reviewed as a group (e.g., shrubby aspen growing on poor substrate). We used 

out-of-sample preliminary model predictions (see model parameterization) to identify potential 

transcription errors in vegetation cover data. We individually reviewed plots with large 

discrepancies between recorded and predicted aspen cover and asked surveyors to re-assess a 

subset of these plots. Similarly, we identified plots with impossible combinations of data (e.g., 

aspen cover estimated to be higher than total hardwood cover). Upon re-assessment, we 

corrected plots that had data-entry errors. 

 

 
Fig 11. Spatial and climatic distribution of survey data collected by this project. Left panel: Survey 

locations are shown in red. The Lake Tahoe Basin Management Unit (LTBMU) is shown in grey. The 

boundary of our study region, the broader Lake Tahoe Area (BLTA), is a 20-km buffer around the LTBMU 

and shown as a black outline. Major lakes are shown in blue. Right panel: Our sampling density with 

respect to number of frost-free days per year, a proxy for the duration of the growing season, 

approximates the distribution of aspen as previously mapped by FVEG within our study area, with a 

notable dearth of plots from areas with longer growing seasons (i.e., ≥ 165 frost-free days per year). 

 

The consensus among surveyors was that larger aspen trees are easily identifiable via 

aerial imagery, while lower growing aspen is challenging to identify even when aerial images are 

entirely unobscured by taller trees. Ground-based imagery did support confident identification of 

low-growing aspen, though these images (e.g., google street view) were less available. As a 

result, our survey method biases our sample away from including plots with low-growing aspen. 

Aspen stands may be low growing because they are young, but aspen also commonly have a 

short, shrubby stature where they grow on suboptimal substrates (e.g., talus) in the study area. 

To the extent that the spectral and phenological signals of low growing aspen differ from larger 

aspen trees, this could bias our mapped outputs to under-detect low-growing aspen, even when 
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satellite imagery is unobstructed by taller trees. However, our informal field surveys suggest our 

models generally perform well in identifying low-growing aspen. 

 Toward the end of our survey efforts, manual review of maps produced by preliminary 

machine learning models revealed remaining commission errors (i.e., predicting aspen was 

present, typically at low cover, in areas where it clearly wasn’t). To tamp down on these errors 

we asked surveyors to identify larger polygons where commission errors were present. Due to 

apparent similarity in spectral signals between aspens and cottonwoods, we asked surveyors to 

identify large polygons where neither aspen nor other Populus spp. were present, and where 

the model predicted > 5% aspen cover over a substantial portion of the polygon. We called this 

category of survey no-Populus polygons (NPP). From the NPPs we extracted a weighted 

random sample of 900-m2 plots that were fully contained within the NPPs (i.e., not spanning the 

edge of NPP boundaries) for model training. While commission errors remain, this approach 

greatly reduced the prevalence of commission errors. 

 Overall, our vegetation survey efforts resulted in 1,405 quality-controlled surveys of 900-

m2 plots, aligned to the USGS Landsat grid, and 80 large no-Populus polygons. 1,396 of the plot 

surveys include estimates of aspen cover. 197 plot surveys include estimated percent cover for 

at least one non-aspen hardwood taxa. 57 surveys include non-zero estimates of percent cover 

for at least one non-aspen hardwood taxa (i.e., primarily collected by USFS). Due to the dearth 

of taxon-specific cover estimates for other hardwood species we were limited to producing maps 

of aspen cover only. Surveys span the period 2004 to 2023 and include 63 plots that were 

resampled over time, in areas where disturbance events were evident (Fig 12). The sampling 

density of 900-m2 plots appears to closely approximate the distribution of aspen within our study 

area with respect to number of frost-free days per year, a climatic proxy for differences in the 

timing of aspen phenology (Fig 11). The sample has a notable bias toward inclusion of plots 

with higher (e.g., 70–90% cover) aspen cover, compared to plots with lower percent cover (Fig 

13). 
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Fig 12. Number of surveys of 900-m2 Landsat-aligned plots over time. Each survey included either a 

single representative date or a range of dates, for which the surveyor was confident in the accuracy of 

their vegetation cover estimates. The sample includes 63 plots that were sampled over multiple distinct 

periods (e.g., before and after substantial disturbances).  

 

 
Fig 13. Histogram of Aspen percent cover from above in our sample of 900-m2 Landsat-aligned plots.  

 

 

Reflectance Data 
To capture phenological signals we categorized spectral data into distinct seasonal 

periods by calendar day of year. Spectral data was filtered to remove obstructions, including 

clouds, dilated clouds, cloud shadows, and surface water. We endeavored to balance the 

tradeoff between signal improvements associated with finer temporal resolution seasonal 

periods against reductions in the sample size of obstruction-free images. For models focused on 

estimating vegetation cover over longer, multi-year periods (e.g., for a five-year period, such as 
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2019–2023) finer temporal resolution (e.g., 15-day periods during the summer low cloud period, 

from day of year 165 to 330) tended to achieve higher cross validated predictive accuracy. For 

models focused on estimating vegetation cover over shorter annual periods (e.g., for a single 

year up to a few years) longer seasonal periods appear to be more appropriate.  

 

 
Fig 14. Phenological patterns in spectral signatures provide signals that can be used to identify 

vegetation composition from high-temporal resolution multi-spectral satellite imagery. Distinct 

phenological signatures both inside and outside of the low-obstruction period appear to be highly 

informative. The spring peak in short-wave infrared bands 6 and 7 around day of year 120 is frequently 

obstructed by clouds (Fig 15). 

 

We obtained and processed gridded reflectance data from the USGS Landsat 4–9 

Collection 2, Level 2, Tier 1 dataset using Google Earth Engine and R. To minimize data 

degradation, we maintained the data in its native USGS grid projections within our project area, 

which falls under UTM zones 10 and 11 (30-m resolutions, origins at 15, 15). Data was 

downloaded in tabular and raster formats. Tabular data consisted of unprocessed individual 

reflectance measurements and obstruction flags, for plots (i.e., raster cells) where we had 

collected vegetation cover data. This time-series data was processed in R and used for initial 

model tuning. Raster data was processed into obstruction-free, median-over-time values 

covering our study area. Time periods consisted of combinations of up to 16 seasonal periods 

per year (e.g., days of year 165–180, etc.), with both annual and multi-annual (e.g., 2019–2023) 

periods. Spatially extensive raster data was used for final model parameterization and 

predictions. Compressed reflectance data occupy a couple hundred gigabytes of storage. 
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Fig 15. Number of unobstructed Landsat 8–9 observations per pixel in our study region by seasonal 

period, from 2013 to 2023. Boxes depict the median and interquartile range. Whiskers depict the 99% 

central range. Obstructions include clouds, dilated clouds, cloud shadows, and snow. The “low 

obstruction period” in our study region approximately spans the period from day of year 165 to 330. 

 

Model Parameterization 
 We combined three types of vegetation cover data for model training and validation. The 

first and most important category was surveys of 900-m2 Landsat-aligned plots. The second 

category was background or “pseudo-absence” plots. Locations of about 40,000 background 

plots were randomly drawn from our study region. To increase the odds that background plots 

were not located within aspen stands, we discarded plots in, or within 60-m of, areas previously 

mapped as aspen or montane riparian types. The third category, no-populus polygons (NPP), 

was introduced last to tamp down on remaining commission errors that were apparent when 

manually reviewing model predictions against remote imagery. We provided vegetation 

surveyors with predicted maps of aspen cover and asked them to identify large polygons where 

they had high confidence that Populus spp. were not present and where portions of the 

polygons were predicted to have substantially greater than zero aspen cover. We then selected 

a weighted random sample of about 40,000 Landsat-aligned plots that were fully contained in 

(i.e., not spanning the edge of) the NPPs. 

We temporally aligned vegetation cover estimates with reflectance data. Fire severity 

was estimated using the CALFIRE fire perimeter database and methods from Parks et al. 2018 

and Stewart et al. 2021. When moderate wildfire (e.g., > 10% basal area loss) and other known 

disturbances (e.g., white satin moth outbreaks) were not apparent, we assumed that vegetation 

cover remained relatively unchanged over time. The strength of this key assumption was 

iteratively tuned for different versions of the model (e.g., vegetation cover was assumed to be 

constant for 1–15 years in absence of disturbance). Resulting model predictions were then 
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evaluated for their cross-validated predictive performance and as well as their accuracy when 

assessed with remote imagery and field surveys. 

 

 
Fig 16.  Importance of Landsat 8-9 imagery from different spectral bands and seasonal periods (day or 

year ranges) for predicting aspen cover for extreme gradient boosting and Maxent. Note that extreme 

gradient boosting reports higher importance for the spring period from day of year 121 to 160, when the 

spring green-up signal is often obscured by cloud cover, reflecting the XGB’s flexibility in accommodating 

missing independent data. 

 

 Of the many model-fitting algorithms we evaluated, extreme gradient boosting (XGB) 

and Maxent (ME) had the best cross validated predictive performance and the most plausible 

predictions when compared with remote photography. Hyperparameters for XGB were manually 

tuned by iteratively fitting models and examining cross-validated predictive accuracy and 

comparing predictions against aerial imagery. Maxent typically requires Bernoulli distributed (0-

1) response variables; to transform percent cover estimates into binary data we disaggregated 

each individual binomial cover estimates into up to 100 Bernoulli-distributed values for the 

response variable (i.e., 25% cover becomes 25 observations of 100% cover and 75 

observations of 0% cover).  

Between these two algorithms XGB is particularly useful due to its seamless ability to 

produce predictions when missing independent variables are present. This ability enables 
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incorporation of finer temporal resolution seasonal spectral data, where missing data may be 

present due to prevalence of obstructions such as cloud cover. The implication here is that XGB 

has superior ability to incorporate spectral signals that are sometimes obstructed, such as 

spring peaks in short-wave infrared bands 6 and 7 that are often obstructed by clouds (Figs 14, 

15, 16). In contrast, feeding missing data into ME (e.g., one out of many seasonal periods has 

no obstruction-free spectral data) results in both discarding whole vegetation surveys from 

model parametrization and in missing (no data) areas on predicted maps of vegetation cover.  

 

 
Composite Image of Aspen in October 2023 by Derek Young 

 

Contributors 
Laura Young-Hart contributed to designing our vegetation survey protocol, conducting 

surveys, and advising other surveyors. Travis Freed and Nick Miley performed the bulk of 900-

m2-plot vegetation surveys for this project. Jennifer O'Brien contributed to vegetation surveys. 

Derek Young conducted drone flights in October 2023 and assembled composite images. Quinn 
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Supplementary Materials 
Estimates of aspen cover in the broader lake Tahoe area over the period 1984–2023 are 

available at https://stewartecology.org/TahoeAreaAspenMaps/ 

https://stewartecology.org/TahoeAreaAspenMaps/
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